

Jerk analysis offers Valve Actuation functions as new CHF markers

What is a Jerk? - In Physics Jerk means the rate of change of acceleration with respect to time.

Jerk is the time derivative of acceleration:

1.45

1.5

$$J(t) = \frac{da(t)}{dt} = \frac{d^2v(t)}{dt^2} = \frac{d^3r(t)}{dt^3}$$

Dr. Alexander Brenner

Pi-Harvest Israel

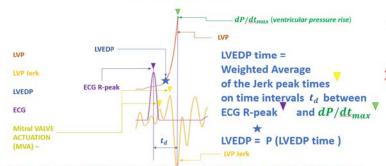
Abstract authors

Dr. Alexander Brenner, Pi-Harvest Israel | Felix Brenner, Pi-Harvest Israel

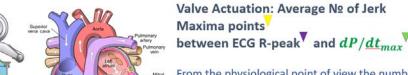
Prof. Avraham Lorber, Pi-Harvest Israel

1.55 1.65

1.75

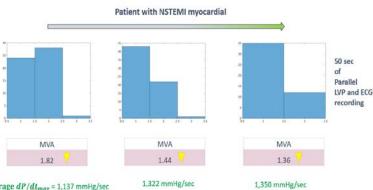

1.7

Jerk analysis & Valve Actuation



Mitral VALVE ACTUATION (MVA)- new measure of detection and evaluation of heart failure severity

LVP Jerk and LVEDP


- If there exists one such LVP jerk peak on this interval, then LVEDP is the pressure at this time moment
- If there exist more than one such peaks, the LVEDP is the LVP at a time point calculated as the weighted average of the two rightmost jerk maxima, where the weights are proportional to the absolute peak ratio of the ierk maxima.

From the physiological point of view the number of these local maxima points

- characterizes the non-uniformity and quality of the ventricular preload
- quantifies
 - · isovolumetric contraction smoothness
 - · irregularities of a Heart Valve closure.

MVA histogram skewed left after stent insertion

Average dP/dtmax = 1,137 mmHg/sec

Tricuspid Valve Actuation (TVA), Aortic Valve Actuation (AVA), Pulmonary Valve Actuation (PVA) are defined similarly

Results

- MVA / TVA as time series are statistically independent from ventricular pressure rise $dP/dt_{max,L/R}$ which are classical quality markers of LV/RV systolic function.
- MVA characterizes the dynamics of Mitral valve closure and $dP/dt_{max,L}$ Aortic valve opening.
- TVA characterizes the dynamics of Tricuspid valve closure and $dP/dt_{max\,R}$ Pulmonary valve opening.

Left heart	Average	STD	Relative STD	Corr	Correlation with LVE_P	Right heart	Average	STD	Relative STD	Corr	Correlation with RVE_P
dP/dt _{max,L} (mmHg/msec)	1.22	0.055	0.045	0.059 (with MVA)	-	$dP/dt_{max,R}$ (mmHg/msec)	0.22	0.015	0.068	-0.06 (with TVA)	
MVA	2.46	0.64	0.26	0.54 (with AVA)	-0.03 (with LVEDP)	TVA	3.05	0.69	0.23	0.25 (with PVA)	0.09 (with RVEDP)
dP/dt _{min,L} (mmHg/msec)	-1.31	0.08	0.06	0.08 (with AVA)		$dP/dt_{min,R}$ (mmHg/msec)	-0.21	0.013	0.062	0.16 (with PVA)	*
AVA	2.26	0.68	0.30	-	0.01 (with LVESP)	PVA	2.38	0.80	0.34	- 1	0.06 (with RVESP)

LVEDP: Left Ventricular End Diastolic Pressure LVESP: Left Ventricular End Systolic Pressure

RVEDP: Right Ventricular End Diastolic Pressure RVESP: Right Ventricular End Systolic Pressure

Valve Actuation Triangular Indexes (MVATI, TVATI,...)

 Triangular Indexes of the histograms of the time intervals t_d, between ECG R-peak and the L/RVP inflection point corresponding to ventricular pressure rise $dP/dt_{max,L/R}$ across overall measurement time and respectively from ventricular pressure fall $dP/dt_{min L/R}$ LVEDP to L/RVESP across overall measurement time. characteristics ECG R-peak Mitral VALVE 95.92 27.54 104.85 ACTUATION (MVA) -101.42 221.4 AVATI

differentiating NSTEMI Myocardial infarction with preserved and reduced ejection fraction

MVATI and AVATI can be the further markers

Results

- For NSTEMI patients the average AVA = 2.78 while for leftover group AVA = 1.75 (overall AVA = 2.26 ± 0.68).
- $-dP/dt_{max}$ AVA may be considered as an independent marker for NSTEMI myocardial infarction
 - In combination with $dP/dt_{max,L}$ and $dP/dt_{min,L}$ NSTEMI patients with preserved and reduced ejection fraction can be differentiated:

Left heart characteristics	Average	STD	NSTEMI	NSTEMI with HFpEF	NSTEMI with HFrEF
$\frac{dP/dt_{max,l}}{\text{(mmHg/msec)}}$	1.22	0.055	1.12	1.19	0.72
$\frac{dP/dt_{min,l.}}{(\text{mmHg/msec})}$	-1.31	0.08	-1.2	-1.25	-0.84